If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+9b-7=0
a = 1; b = 9; c = -7;
Δ = b2-4ac
Δ = 92-4·1·(-7)
Δ = 109
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{109}}{2*1}=\frac{-9-\sqrt{109}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{109}}{2*1}=\frac{-9+\sqrt{109}}{2} $
| 7/8x-20=1 | | 6x+4(x-4)=54 | | 3x-13=4x+5 | | 7x+4(x-7)=71 | | 10(x+8)=-5(x-22) | | 4b+2b=16 | | 4x^2-10=134 | | 2x+2(2x-6)=42 | | 5+3x=7+9 | | 3/7+x=4/7 | | -6.5+3x=6x | | 2x/72=2/x/2 | | 4x+6(x+3)=68 | | 1/2y-5=-13 | | 5/8=x/16 | | -6.5=3x | | 5x+2(6x-4)=94 | | -15s+43+3(5s-9)=0 | | 2.89=0.8b | | 5x+3(4x-2)=96 | | x/4=9/13 | | 5+2x=-9x-24 | | 6x+3(2x-8)=96 | | Y=2x^2+2x+43 | | 3(x-)=-3 | | 2x-1+5x-42=180 | | 4=-1=x/2 | | 2x+3(x+5)=40 | | 9a+15=10a−7 | | B+1/4b=25 | | 2x+5(2x+3)=75 | | 125m-75m+38,600=40,000-150m |